

PHARMACOLOGY

Drugs for Diabetes

Non-insulin

Skye McKennon, PharmD. BCPS, ACSM-GEI

August 24, 2023

What was one of your highlights from summer break?

Nobody has responded yet.

Hang tight! Responses are coming in.

DISCLOSURE

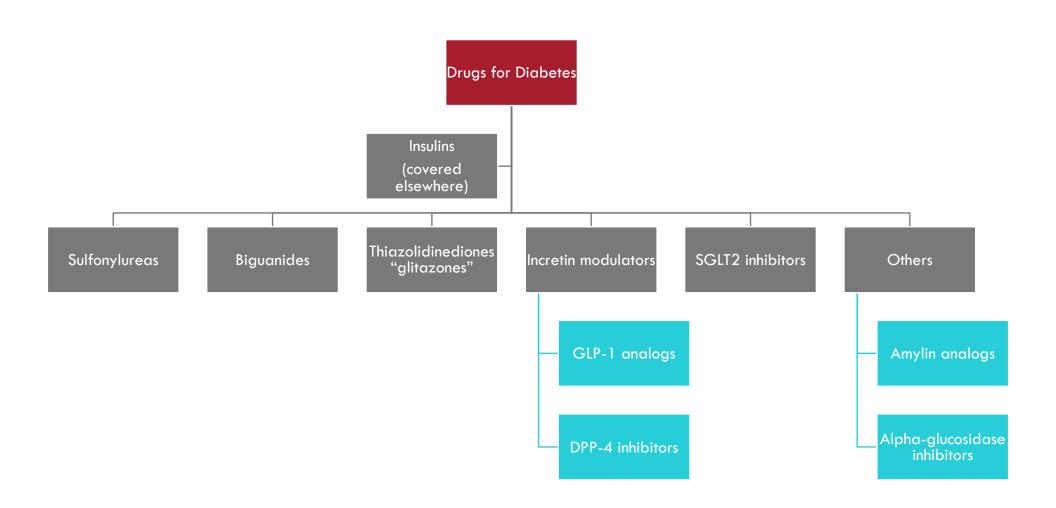
None

Use Statement

WARNING: COPYRIGHT RESTRICTIONS This course content and all writings and materials provided to you at the Elson S. Floyd College of Medicine are protected by federal copyright law and Washington State University policy. The content is copyrighted by the Washington State University Board of Regents or licensed to the Elson S. Floyd College of Medicine by the copyright owner. Limited access to this content is given for personal academic study and review purposes of registered students and faculty of Elson S. Floyd College of Medicine. You shall not otherwise copy, share, distribute, modify, transmit, upload, post, republish, reuse, sell, gift, rent, lend or otherwise disseminate any portion of this course content without permission in writing, signed by an individual authorized by Washington State University.

OBJECTIVES

- 1. Identify appropriate drugs and drug classes for managing diabetes.
- 2. Explain the mechanism of action of drug classes (sulfonylureas, glucagon-like peptide [GLP-1] receptor agonists, dipeptidyl peptidase inhibitors [DPP-4] inhibitors, biguanides, thiazolidinediones, and sodium-glucose co-transporter 2 [SGLT2] inhibitors) for managing diabetes and how this relates to the underlying pathophysiology of their clinical use.
- 3. State adverse effects and contraindications to sulfonylureas, glucagon-like peptide (GLP-1) receptor agonists, dipeptidyl peptidase inhibitors (DPP-4) inhibitors, biguanides, thiazolidinediones, and sodium-glucose co-transporter 2 (SGLT2) inhibitors.
- 4. Describe the clinically important drug interactions of sulfonylureas, glucagon-like peptide (GLP-1) receptor agonists, dipeptidyl peptidase inhibitors (DPP-4) inhibitors, biguanides, thiazolidinediones, and sodium-glucose co-transporter 2 (SGLT2) inhibitors.
- 5. Identify drugs for managing diabetes that may also be used for the management of obesity.


Insulin, integral to the management of diabetes, will be covered elsewhere in the curriculum.

PRE-ASSESSMENT

INTRODUCTION

INSULIN EFFECTS

INCREASE SECRETION OF INSULIN

- Sulfonylureas
- Meglitinides

Glucose-Induced

- GLP-1 Receptor Agonists
- Dipeptidyl Peptidase Inhibitors (DPP-4 inhibitors)

"SECRETAGOGUES"

ACTION TYPE

CT DIRECT

INDIRECT

INSULIN EFFECTS

INCREASE SECRETION INCREASE OF INSULIN SENSITIVITY TO INSULIN Sulfonylureas Biguanides (also Meglitinides decrease intestinal DIRECT absorption) Thiazolidinediones **ACTION TYPE** (TZDs) Amylin analogs **Glucose-Induced** GLP-1 Receptor INDIRECT Agonists Dipeptidyl Peptidase Inhibitors (DPP-4 inhibitors) "SECRETAGOGUES" "SENSITIZERS"

INSULIN EFFECTS INCREASE SECRETION INCREASE OF INSULIN SENSITIVITY TO INSULIN Sulfonylureas Biguanides (also Meglitinides decrease intestinal DIRECT absorption) **Thiazolidinediones ACTION TYPE** (TZDs) **Glucose-Induced Amylin** analogs **GLP-1** Receptor INDIRECT **Agonists** Dipeptidyl Peptidase Inhibitors (DPP-4 inhibitors) "SECRETAGOGUES" "SENSITIZERS"

NUTRIENT LOAD EFFECTS

REDUCERS

ACTION TYPE
ON ABSORPTION
ERS INHIBITORS

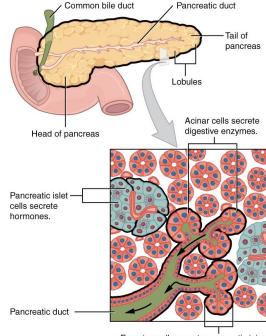
EXCRETION ENHANCERS

- Alpha-glucosidase inhibitors
- Biguanides (also increase insulin sensitivity)
 - Sodium-glucose cotransporter 2 (SGLT2) inhibitors

INTRODUCTION

PATHOPHYSIOLOGY

Inadequate control of plasma glucose


Various classifications (Type 1, Type 2, gestational, steroid-induced, etc.)

Pancreatic islets of Langerhans secrete:

- Insulin (beta-cells)
- Glucagon (alpha-cells)
- Others (amylin, ghrelin, somatostatin, pancreatic peptide)

Insulin is absent or has impaired actions

→ hyperglycemia

Exocrine cells secrete pancreatic juice.

This Photo by Unknown Author is licensed under CC BY

INSULIN SECRETION

Naturally at a basal rate

Stimuli

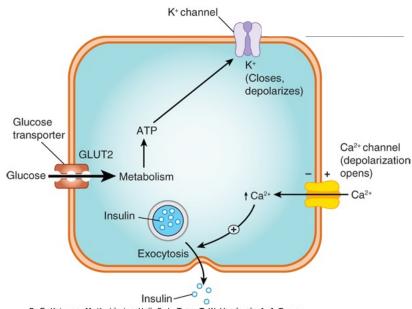
- Glucose and other sugars
- Amino acids such as leucine, arginine
- Hormones such as
 - Glucagon-like polypeptide 1 (GLP-1)
 - Glucose-dependent insulinotropic polypeptide (GIP)
 - Glucagon
 - Cholecystokinin
- High concentrations of fatty acids
- Beta-adrenergic sympathetic activity

ACTIVE LEARNING

Based on what you know about the pathophysiology of diabetes and contributors to insulin secretion, what are potential drug therapy targets? Please annotate the screen with your answers.

SULFONYLUREAS

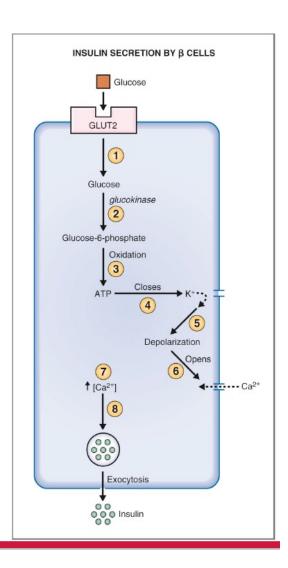
GLUCOSE-DEPENDENT INSULIN RELEASE


Pancreatic beta-cells

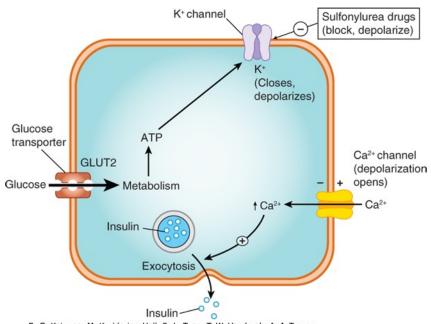
 \uparrow extracellular glucose concentrations \rightarrow glucose entering cells via GLUT2 glucose transporter

Leads to ↑ intracellular ATP production

→ closure of ATP-dependent K+
channels

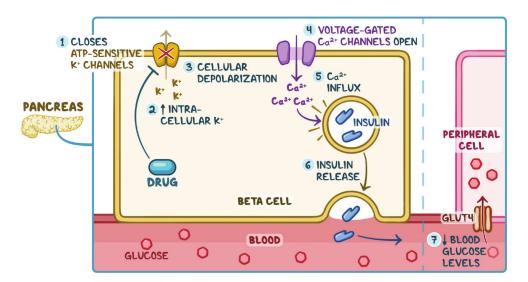

Leads to membrane depolarization → opening of voltage-gated Ca2+ channels → ↑ intracellular Ca2+ → insulin secretion

B. G. Katzung, M. Kruidering-Hall, R. L. Tuan, T. W. Vanderah, A. J. Trevor Katzung & Trevor's Pharmacology: Examination & Board Review, 13e Copyright © McGraw Hill. All rights reserved.


Insulin Secretion

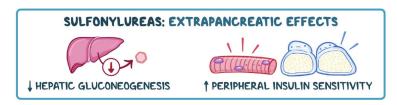
- 1. Transport of glucose into the β cell.
- 2. Phosphorylated to glucose-6-phosphate by glucokinase.
- Glucose-6-phosphate is subsequently oxidized, producing ATP.
- ATP closes ATP-sensitive K+ channels.
- 5. Depolarizes the β cell membrane.
- 6. Depolarization caused by ATP opens these Ca²⁺ channels.
- 7. Intracellular Ca²⁺ concentration increases.
- 8. Increased intracellular Ca²⁺ causes insulin secretion.

SULFONYLUREA MOA: PANCREATIC



B. G. Katzung, M. Kruidering-Hall, R. L. Tuan, T. W. Vanderah, A. J. Trevor Katzung & Trevor's Pharmacology: Examination & Board Review, 13e Copyright © McGraw Hill. All rights reserved.

SULFONYLUREA MOA: PANCREATIC


- Bind to high-affinity sulfonylurea receptor associated with beta-cell inward rectifier ATP-sensitive potassium channel
 - 1. Close ATP-sensitive potassium channels (K-ATP channels)
- 2. ↑ intracellular K+
- 3. Cell depolarization
- 4. Opening of voltage-gated Ca2+ channels
- 5. Calcium influx (↑ intracellular calcium)
- 6. Preformed insulin release
- 7. ↓ glucose levels

SULFONYLUREA MOA: EXTRAPANCREATIC

- ↓ hepatic gluconeogenesis
- Less glucose production
- ↑ peripheral insulin sensitivity
- Enhanced response to insulin

ACTIVE LEARNING

Considering the mechanism of action of sulfonylureas, what adverse effects might be associated with their use? Please annotate the screen with your answers.

SULFONYLUREAS (-IDE)

Name	Cls & Cautions	Adverse Effects	Selected Interactions
Second Gen Glipizide Glyburide Glimepiride	Type 1 DM DKA Sulfonamide allergy*	Hypoglycemia Weight gain Gl Upset SJS (rare)	May potentiate effects of other hypoglycemics Highly protein-bound sulfonylureas
First Gen Chlorpropamide Tolbutamide Tolazamide		Disulfiram-like reactions with first gen	may compete for binding sites

*Scientific basis has been challenged

ACTIVE LEARNING

Glyburide has a plasma half-life ($t_{1/2}$) of 1-2 hours and is hepatically metabolized to products with hypoglycemic activity.

Glipizide ($t_{1/2} = 2 - 4$ hours) and glimepiride ($t_{1/2} = 5$ - 9 hours) are metabolized to products with weak or no activity.

Which sulfonylurea would have the shortest biologic effect? Longest?

Which sulfonylurea might be best for use in an older adult?

CLINICAL USE & ADME

Type 2 DM

Glyburide hepatically metabolized to products with hypoglycemic activity

Glipizide and glimepiride metabolized to products with weak or no activity

ACTIVE LEARNING

An oral glucose load provokes a higher insulin response compared with an equivalent dose of glucose given intravenously.

Which hormones are thought to be responsible for this phenomenon?

INCRETIN MODULATORS

INCRETINS

Hormones secreted from enteroendocrine cells w/in minutes of eating

 Insulin secretory response of incretins (incretin effects) accounts for ≥50% of total insulin secreted after oral glucose ingestion

Regulate the amount of insulin that is secreted

Incretins

- Glucagon-like peptide-1 (GLP-1)
- Glucose-dependent insulinotropic peptide (GIP)

Rapidly deactivated by dipeptidyl peptidase 4 (DPP-4)

INCRETIN MODULATORS FOR DIABETES

GLP-1 Receptor Agonists

Dual-acting GLP-1 and GIP Receptor Agonists

DPP-4 Inhibitors

GLP-1 RECEPTOR

Glucagon family of GPCRs

Found on various tissues

 Pancreatic beta cells, pancreatic ducts, gastric mucosa, kidney, lung, heart, skin, immune cells

Increases cAMP and free intracellular concentration of calcium

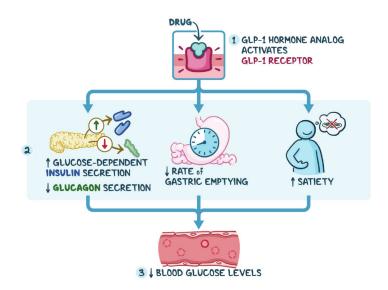
GLP-1 RECEPTOR AGONIST MOA

Activate GLP-1 receptors (analogs)

Binding

- Activates cAMP-PKA pathway and several GEFs
- Initiates signaling via PKC and PI3K
- Alters activity of several ion channels

Results in pancreas


- ↑ glucose dependent insulin secretin
- ↓ glucagon secretion

Results in CNS

- ↓ rate of gastric emptying
- ↑ satiety

Ultimately

• ↓ blood glucose levels

INCRETIN MODULATORS: GLP-1 RAs (-GLUTIDE/-TIDE)

Name	Cls & Cautions	Adverse Effects	Selected Interactions
GLP-1 RAs Dulaglutide (Trulicity) Liraglutide (Saxenda, Victoza)	History of pancreatitis, medullary thyroid cancer T1DM	GI (nausea, vomiting) Pancreatitis Increase satiety Weight loss	Increased risk of hypoglycemia May delay absorption of other medications
Semaglutide (Ozempic, Rybelsus, Wegovy) Exenatide (Byetta)	Cautions: Gastroparesis Renal impairment	Injection site reactions	

Boxed Warnings: Risk of thyroid C-cell tumors

GLP-1 RECEPTOR AGONISTS & OBESITY

FDA approved semaglutide in 2021 for weight loss

Semaglutide

Sold as Wegovy

Liraglutide

DUAL-ACTING GLP-1/GIP RAS MOA

Dual GLP-1 and GIP receptor agonist

Dual agonism ability leads to more significant reduction of hyperglycemia than GLP-1 agonist agents alone

Stimulates insulin release from the pancreas

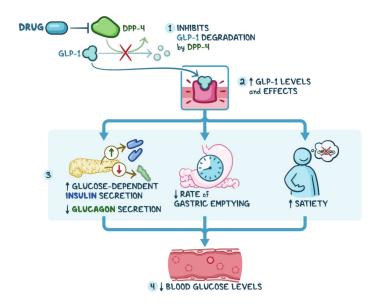
↑ levels of adiponectin

Lowers appetite

INCRETIN MODULATORS: DUAL-ACTING GLP-1/GIP RAS

Name	Cls & Cautions	Adverse Effects	Selected Interactions	
Dual GLP-1 and GIP receptor agonist Tirzepatide (Mounjaro)	History of medullary thyroid cancer T1DM	GI symptoms (pain, constipation, decreased appetite, dyspepsia, nausea, vomiting) AKI Diabetic retinopathy Gallbladder disease	Increased risk of hypoglycemia May delay absorption of other medications	
Boxed Warnings: Risk of thyroid C-cell tumors				

DPP-4 INHIBITOR ("GLIPTIN") MOA


Inhibit GLP-1 degradation by DPP-4

 DPP-4 is serine protease that deactivates GLP-1 and GIP

↑ GLP-1 and GIP levels/effects

- † glucose-dependent insulin secretion
- ↓ glucagon secretion
- May \(\psi \) rate of gastric emptying, \(\frac{1}{2} \) satiety

↓ blood glucose

INCRETIN MODULATORS: DPP-4 INHIBITORS (-GLIPTIN)

Name	Cls & Cautions	Adverse Effects	Selected Interactions
DPP-4 Inhibitors	Concurrent GLP-1	Respiratory and	Increased risk of hypoglycemia
Linagliptin	RA use	urinary infections	
(Tradjenta)		Weight neutral	May delay absorption of other medications
Saxagliptin		Increased satiety	
(Onglyza)		GI upset	
Sitagliptin		Nasopharyngitis	
(Januvia)		Pancreatitis	
		Heart failure	
		Joint pain	
		disease	

CLINICAL USE

T2DM

BIGUANIDES

Sensitizer
Nutrient Load Reducer

BIGUANIDES (METFORMIN) MOA

```
↑ hepatic AMP-dependent protein kinase activity → ↓ genes that promote gluconeogenesis → inhibit gluconeogenesis → ↓ blood glucose
```

 \uparrow adipose/muscle GLUT4 translocation \rightarrow \uparrow peripheral insulin sensitivity \rightarrow \uparrow peripheral glucose uptaee \rightarrow \downarrow blood glucose

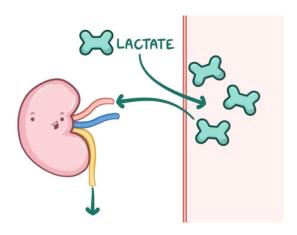
 \downarrow intestinal glucose absorption $\rightarrow \downarrow$ blood glucose

↓ plasma glucagon

BIGUANIDES (METFORMIN)

Name	Cls & Cautions	Adverse Effects	Selected Interactions
Metformin	Cl: eGFR < 30 mL/min/1.73m2; acute or chronic metabolic acidosis Note: May be used in pregnancy	Gl effects Lactic acidosis (caution w/ renal dysfunction) Vitamin B12 deficiency	Increased risk of lactic acidosis with carbonic anhydrase inhibitors, contrast agents

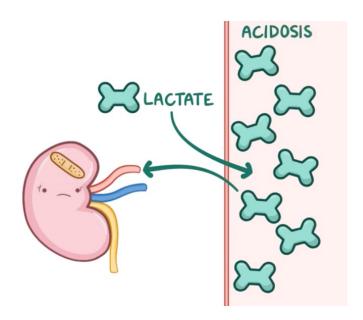
Boxed Warnings: Risk of lactic acidosis that may result in death, hypothermia, hypotension, and resistant bradyarrhythmia.



LACTIC ACIDOSIS & METFORMIN

Lactate is taken up by liver during process of hepatic gluconeogenesis

USED in HEPATIC GLUCONEOGENESIS


Metformin inhibits gluconeogenesis → plasma lactate build up. In healthy individuals, excess lactate usually fine because kidneys able to excrete it in the urine.

LACTIC ACIDOSIS & METFORMIN

In patients with renal dysfunction, kidneys unable to clear excess lactate ightarrow acidosis

CLINICAL USE & ADME

T2DM

Off-label use:

- Antipsychotic-induced weight gain
- Prevention of T2DM
- Gestational diabetes
- PCOS

Excreted by kidneys as active drug

- Use safely with eGFR between 60 and 45 mL/min/1.73 m2
- Use cautiously with stable eGFR between 45 and 30 mL/min/1.73 m2
- Contraindicated if eGFR is less than 30 mL/min/1.73 m2

Titrate dose

ALTERNATE APPLICATIONS: METFORMIN & AGING

Cell Metabolism

Perspective

Benefits of Metformin in Attenuating the Hallmarks of Aging

Ameya S. Kulkarni, 1,2,* Sriram Gubbi, 3 and Nir Barzilai1,2

¹Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA

²Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York, NY, USA
³Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda,
MD, USA

*Correspondence: ameyak225@gmail.com (A.S.K.), nir.barzilai@einsteinmed.org (N.B.) https://doi.org/10.1016/j.cmet.2020.04.001

Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin, a biguanide that combats age-related disorders and improves health span, is the first drug to be tested for its age-targeting effects in the large clinical trial—TAME (targeting aging by metformin). This review focuses on metformin's mechanisms in attenuating hallmarks of aging and their interconnectivity, by improving nutrient sensing, enhancing autophagy and intercellular communication, protecting against macromolecular damage, delaying stem cell aging, modulating mitochondrial function, regulating transcription, and lowering telomere attrition and senescence. These characteristics make metformin an attractive gerotherapeutic to translate to human trials.

THIAZOLIDINEDIONES (TZDs OR GLITAZONES)

Sensitizer

PPAR GAMMA

Peroxisome proliferator-activated receptor-gamma (PPAR-gamma)

Member of the steroid and thyroid superfamily of nuclear receptors

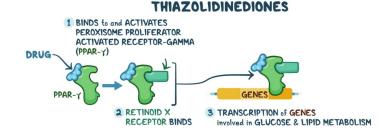
- Family of ligand-activated transcription factors of nuclear hormone receptors
- Regulate energy homeostasis

Genes activated by PPAR-gamma present in fat, muscle, and liver

- Regulate glucose metabolism, fatty acid storage, adipocyte differentiation
- Adipocytes have highest concentration of PPAR-gamma receptors in body

ACTIVE LEARNING

Recall pharmacology from your MS1 year. Which of the following also work on PPAR?


- A. Calcium channel blockers
- **B.** Fibrates
- C. Progesterone
- D. Thiazide diuretics

TZD MOA

TZDs are ligands of PPAR-gamma

PPAR found in muscle, liver, and fat

Bind to Retinoid X receptor and activate PPAR-gamma → modulation of gene expression involved in lipid and glucose metabolism, insulin signal transduction, and adipocyte and other tissue differentiation

- ↑ GLUT1 and GLUT4 expression
 - † glucose uptake in adipocytes & skeletal muscle in response to insulin († insulin sensitivity)
- ↓ hepatic glucose production and ↑ hepatic glucose uptake
- ↓ free fatty levels
- ↑ adiponectin

TZDs

Name	Cls & Cautions	Adverse Effects	Selected Interactions
Pioglitazone Rosiglitazone	NYHA Class III/IV HF Cautions: Monitor liver enzymes	Weight gain Fluid retention; heart failure (HF) Increased risk of fractures Hepatitis; liver failure Pioglitazone: bladder cancer Rosiglitazone: increased LDL, MI, CV death	Vasodilators increase ischemic effects of rosiglitazone Pioglitazone induces CYP3A4

TZD Boxed Warnings: Heart failure

Rosiglitazone-specific: myocardial infarction

CLINICAL USE & ADME

T2DM

Off-label

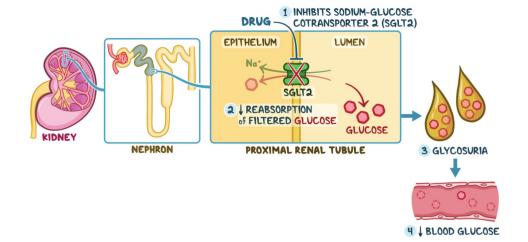
Pioglitazone: nonalcoholic steatohepatitis Metabolized in liver

- CYP2C9
- CYP3A4

SODIUM-GLUCOSE CO-TRANSPORTER 2 (SGLT2) INHIBITORS

Nutrient Load Reducer

SGLT2 INHIBITORS MOA


Inhibit SGLT2 in proximal renal tubules

 Accounts for 90% of all renal glucose reabsorption

↓ reabsorption of filtered glucose

Causes glucosuria

↓ blood glucose

SGLT2 INHIBITORS (-GLIFLOZIN)

Name	Cls & Cautions	Adverse Effects	Selected Interactions
Canagliflozin (Invokana)	Dialysis Cautions:	Genitourinary infections (eg, vaginal candidiasis)	Increases digoxin concentrations
Dapagliflozin	Check renal function	Volume depletion	Increased hypotensive effects
(Farxiga)	Canagliflozin:	Ketoacidosis	of loop diuretics
Empagliflozin (Jardiance)	Increased risk of LL amputations w/	AKI Weight loss	3A4 inducers decrease levels
	CVD	Increased LDL	
		Risk of Fournier gangrene	

CLINICAL USE

T2DM

BROMOCRIPTINE

Dopamine receptor agonist

Indicated for T2DM, treatment of Parkinson's disease, and hyperprolactinemia

Adverse effects

 Nausea, fatigue, dizziness, orthostatic hypotension, vomiting, headache

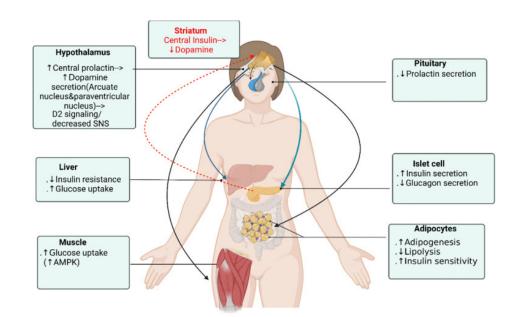


Image credit:

 $https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10012161/\#: \sim text = Dopamine \%20 agonists \%20 affect \%20 glucose \%20 homeostasis \%20 by \%201)\%20 stimulating \%20 central \%20 prolactin, and \%20 on \%20 adipocyte \%2C \%20 hepatocyte \%2C \%20 skeletal$

CLINICAL CONSIDERATIONS

COMPARISON

Drugs	Ability to Lower Glucose	Risk of Hypoglycemia	Weight Change
2 nd Generation SU	High	Yes	Increase
Metformin	High	No	Neutral- modest weight loss
TZDs	High	No	Increase
DPP-4 inhibitors	Intermediate	No	Neutral
SGLT2 inhibitors	Immediate	No	Decrease
GLP-1 receptor agonists	High	No	Decrease

COMPARISON

Drugs	Effect on ASCVD	Effect on HF	Effect on Renal Disease
2 nd Generation SU	Neutral	Neutral	Neutral
Metformin	Potential Benefit	Neutral	Neutral
TZDs	Potential Benefit (Pioglitazone)	Increased	Neutral
DPP-4 inhibitors	Neutral	Potential Increase (saxagliptin and alogliptin)	Neutral
SGLT2 inhibitors	Potential Benefit	Benefit	Benefit- Reduced progression of renal failure
GLP-1 receptor agonists	Benefit	Neutral- Potential Benefit	Benefit- Decreased proteinuria

PREGNANCY

ACOG pharmacologic recommendations for gestational diabetes

- Insulin
- Metformin
- AVOID: glyburide (macrosomia and birth injury)

REFERENCE LIST

Eggleton JS, Jialal I. Thiazolidinediones. [Updated 2023 Feb 20]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551656/#

Kulkarni AS, Gubbi S, Barzilai N. Benefits of Metformin in Attenuating the Hallmarks of Aging. Cell Metab. 2020;32(1):15-30. doi:10.1016/j.cmet.2020.04.001

Masharani U, Kroon L. Pancreatic Hormones & Glucose-Lowering Drugs. In: Katzung BG, Vanderah TW. eds. Basic & Clinical Pharmacology, 15e. McGraw Hill; 2021. Accessed July 20, 2023. https://accessmedicine.mhmedical.com/content.aspx?bookid=2988§ionid=250601239

Pancreatic Hormones, Antidiabetic Drugs, & Glucagon. In: Katzung BG, Kruidering-Hall M, Tuan R, Vanderah TW, Trevor AJ. eds. Katzung & Trevor's Pharmacology: Examination & Board Review, 13e. McGraw Hill; 2021. Accessed July 20, 2023. https://accessmedicine.mhmedical.com/content.aspx?bookid=3058§ionid=255306810

Powers AC, D'Alessio . Endocrine Pancreas and Pharmacotherapy of Diabetes Mellitus and Hypoglycemia. In: Brunton LL, Hilal-Dandan R, Knollmann BC. eds. Goodman & Gilman's: The Pharmacological Basis of Therapeutics, 13e. McGraw Hill; 2017. Accessed July 20, 2023. https://accessmedicine.mhmedical.com/content.aspx?bookid=2189§ionid=172482821

Sapra A, Bhandari P. Diabetes. [Updated 2023 May 29]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551501/1

ANY QUESTIONS?